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Abstract-Simple formulae for the overall heat and moisture transport rates due to laminar natural 
convection in a rectangular cavity are obtained by scale analysis from the governing differential equations 
and a simplified picture of the flow. The two formulae contain a single unknown proportionality constant, 
which is determined by a least squares fit to the results of a series of numerical solutions. The relations 
apply for the case of isothermal vertical walls at constant, unsaturated relative humidity, and adiabatic, 
impermeable horizontal walls. The heat transfer formula agrees well with published data for the square 

cavity with zero humidity gradient. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

The transfer of heat by natural convection across ver- 
tical air filled cavities is important in assessing the 
thermal performance of buildings. The flow in an 
enclosure is driven by differences in density due to 
temperature and composition gradients. The most 
common compositional gradient is that due to 
humidity. A humidity gradient will also lead to the 
transfer of energy by desorption and adsorption which 
may, particularly in the tropics, far exceed the heat 
transfer. An understanding of these two effects of 
humidity on natural convection in vertical air filled 
cavities is thus crucial for the design of energy efficient 
housing in warm, humid climates. 

If the humidity boundary conditions everywhere 
involve either saturation or impermeability, the prob- 
lem may be solved with the Close-Sheridan analogy 
[ 1, 21 and any of the plentiful heat transfer only solu- 
tions [3-61. This assumes the air to be everywhere 
saturated within the cavity, so that the thermo- 
dynamic state of the fluid at any point is uniquely 
determined by the total pressure and the temperature. 
The humidity transport equation is, thereby, rendered 
redundant. The vapour pressure exerted by a porous 
body, such as often forms a cavity boundary, is gen- 
erally less than the saturation value [7], so that the 
state at any point within the cavity is a function of 
three independent intensive properties (e.g. total pres- 
sure, temperature and specific humidity). The 
humidity transport equation must, therefore, be 
retained, unless the thermal and compositional diffus- 
ivities are equal and the thermal and compositional 
boundary conditions are similar, allowing the solution 
of the problem using heat transfer only correlations. 
For moist air, the diffusivities are roughly equal 
(Le=O.85), so that this approach may yield fairly 

accurate transport rates. In general, however, the 
humidity and transport equations are independent. 

In the past, scale analysis has been used to predict 
the asymptotic behaviour of the transport rates in 
vertical boundary layers, as the Prandtl and Schmidt 
numbers tend to zero or infinity for buoyancy domi- 
nated by either temperature or concentration gradi- 
ents [8]. These results have been verified numerically 
for the square cavity [9], but difficulties were enco- 
untered in the “transitional” region, i.e. Prandtl 
and/or Schmidt numbers around unity. Since for 
humid air, the Prandtl and Schmidt numbers are both 
of order unity, and the magnitudes of the thermal and 
compositional buoyancies are often comparable, this 
asymptotic analysis is of limited use. Further, while 
vertical boundary layers tend to form in the cavity as 
the buoyancy forces increase, the stagnation in the 
corners significantly affects the flow and consequent 
convective transport. This was also suggested by 
Beghein et al. [9], as a possible cause for their cor- 
relation difficulties. The effect is more pronounced 
at lower aspect ratios so that, for example, the ap- 
proximate analytic solution of Raithby et a/. [lo] 
for the single fluid case is not expected to hold for 
~4 < 5. In this paper, Prandtl and Schmidt numbers 
are just less than unity, as appropriate for humid 
air. Further, the effect of the corners is taken into 
account. 

THE PROBLEM 

For simplicity, we deal only with two dimensional, 
steady, laminar flows with no condensation within the 
flow field and negligible viscous dissipation, Soret and 
Dufour effects. The governing equations are thus [l l] : 

v*pu=o (1) 
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NOMENCLATURE 

cavity aspect ratio 
virtual Boussinesq number, 
p’c;gfi,AT,L’!‘k’ 
mass transfer virtual Boussinesq 
number, gp,\T,L’:‘D’ 
constant of proportionality 

RCi Rayleigh number. f~‘c,,,q/JATL’:/tk 
SC Schmidt number. &pD 
S/l Sherwood number. ratio of mass 

transfer to that under pure diffusion 
T absolute temperature. 

isobaric specific heat 
binary diffusivity 
gravitational field strength 
unit vertical vector 
thermal conductivity 
cavity width 
Lewis number. Sc;Pr 
mass fraction of water vapour 
humid air 
molar mass 
buoyancy ratio, (fi,AT,/[IAT)m 
Nusselt number, y’:‘.dkAT 

Greek symbols 

/I bulk expansion coefficient 
(5 characteristic diffusion length 
A difference, generally across cavity. 

in (19)-(22) across vertical 
boundary layer 

in 

-1 

normalised longitudinal boundary 
layer coordinate 
characteristic advection length 
dynamic viscosity 
density. 

total pressure 
excess pressure, p + pgl’ 
Prandtl number, ,dh-c,, 
heat transfer rate per unit depth of 
cavity 
universal gas constant 

Subscripts 
(1 dry air 
1‘ virtual 
II’ water vapour 
0 reference level. 

but 

pu * Vu = - Vp’ - [p ~ p( T,,.O)]g; A SIMPLIFIED PICTURE OF THE FLOW FIELD 

+V~I.tVu+;V~v?r (2) 

pc,u*VT=V.kVT (3) 

pu*Vm = V.pDVtn. (4) 

The density may be expressed in terms of the virtual 
temperature, defined as the temperature at which dry 
air would have the same density and total pressure 
[ 121. Assuming that humid air behaves as an ideal gas 
mixture, this gives : 

p = pk.‘, ,!# T, (5) 

T,, = T[1 -(I -M,:‘M,)m]. (6) 

The boundary conditions commonly considered in 
single fluid studies are isothermal vertical walls and adia- 
batic horizontal walls. For the mass transfer, we extend 
these to constant humidity vertical walls and imper- 
meable horizontal walls. The velocity is assumed to be 
zero at the walls. The situation is summarised in Fig. I. 

T(0.j.) = T,,-ATi’2, T(L,_y) = T,,+AT,:2 (7) 

ttg(O, J,) = ttt,, - Ati7/2, WZ( L. 1‘) = ttt,) + AtiT/ 

(8) 

y,, =gj_,,=$~,_,, =$I,-,,=O ty) 
u = 0. \-=O.L and ,’ = 0. H. (IO) 

According to Gill’s [13] picture of the flow in the 
single fluid case, the natural length scale of the flow is 
not the same everywhere in the cavity. The transport 
of momentum, heat and humidity occurs by advective 
and diffusive processes. Advection dominates where 
the local component of velocity parallel to the direc- 
tion of interest is large. Following Gill, we assume 
that there exists a stagnant core which is stably strati- 
fied with respect to virtual temperature. Significant 
flow occurs only in the boundary layers along the 
walls. up the virtually hotter wall, down the virtually 
colder wall and horizontally at the other walls so as 
to make a single cell. 

Thus transport will occur primarily by advection 
along and diffusion across the layers, and we can say 
that there are two characteristic lengths for the flow: 
one for diffusive processes, denoted by 6 and related 
to the boundary layer thickness. and one for advec- 
tion, i, related to the boundary layer length. As the 
horizontal walls are adiabatic and impermeable, we 
need consider only the transport in the vertical bound- 
ary layers. Simplistically, we assume that i and 6 are 
independent of position and moreover apply equally 
to the transport of momentum. heat and humidity. 
This is only reasonable in so far as the Prandtl and 
Schmidt numbers are of order unity. 

The advection length, j,, may be related to the cavity 
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Fig. 1. The conceptual subdivision of the cavity, showing 
diffusion and advection lengths. 

height, dL, if we further assume that no significant 
transport occurs in the corner regions, and that the 
dimensions of these are of the same order as the 
diffusion length, 6. Thus, 

1”” &L-26. (11) 

The conceptual subdivision of the cavity is illustrated 
in Fig. 1. 

SCALES IN THE VERTICAL BOUNDARY LAYERS 

The Nusselt Number, NM, is closely related to the 
ratio of the advection and diffusion lengths. For the 
actual heat transfer, neglect the corners, where the 
flow is stagnant and assume simple conduction across 
the hot wall boundary layer. Assume that the tem- 
perature in the core is linearly distributed from the 
minimum to the maximum values (the temperatures 
at the cold and hot walls, respectively) up the outside 
of the vertical boundary layers, so that the local tem- 
perature differences across the vertical boundary lay- 
ers vary linearly from 0 to AT. The heat transfer rate 
for the cavity is then given by : 

kA Ti 

26 (12) 

The pure conduction heat transfer is .dLkAT/L 
= d’kAT, so that the Nusselt number is : 

Nu = & (13) 

The Nusselt (or Sherwood) number for a vertical 
natural convection boundary layer has been shown 
to be inversely proportional to the boundary layer 
thickness [S, 91, but here the relationship is not so 
simple, as the advection length, i, is a function of 6 
(11). It will be true in the limit as the boundary layer 
thickness tends to zero, but at least in the laminar 
region, the boundary layers account for a sizable por- 
tion of the total cavity. Equation (13) thus takes into 
account, in a rudimentary way, the stagnation effect 
of the corners. 

The conservation of momentum equation (2) con- 
sists of advection, excess pressure gradient, viscosity 
and buoyancy terms. The excess pressure gradient, 
Vp’, only plays a role in the corner regions, so that in 
the vertical boundary layers a balance must be struck 
between the inertial and frictional forces on one hand 
and the driving buoyancy force on the other, yielding : 

(14) 

(15) 

Buoyancy (P - ds. (16) 

According to the discussion of the previous section, 
the operator c’/i$ should be replaced by l/i and (?/ax 
by l/S and their operands by the relevant charac- 
teristic scale. If we assume d >> 6 and 21 >> u (hence 
limiting attention to the boundary layer regime) and 
neglecting bulk expansion and property variations (as 
is routinely done in the Boussinesq approximation), 
the magnitudes of the inertia and friction terms are of 
order : 

Inertia p F/i (17) 

Friction p V/6” (18) 

where V is the as yet undetermined vertical speed 
scale. 

Rewriting the buoyancy term as the first two terms 
of a Taylor series expansion in the virtual temperature, 
according to the full (ideal) equation of state : 

I’--PO = -B,AT\Po (19) 

where 

Bv = l/T,, (20) 
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T,,,, = T, [ 1 - (1 - M,/M,)nz,,]. 

Thus, the buoyancy term becomes: 

(21) 

Buoyancy gfi,.AT,p. (22) 

AT, in equation (22) refers to the virtual temperature 
difference across the vertical boundary layer. This 
varies with height (decreasing up the virtually hotter 
wall) because of the stratification of the core, but in 
an average sense will be proportional to the difference 
between the two vertical walls. This is the meaning 
with which we invest AT, from now on so this only 
gives a prediction for the overall transport rate, not 
the local values. 

L’v Bo,, 
-_4- 
b 1+ O(Pr) 

Between equations (1 I), (29) and (13), the charac- 
teristic lengths can be eliminated to give a pro- 
portionality relating the heat transfer rate to the 
boundary conditions and fluid properties. 

Nu(Nu+.d-'j' - Bob 
.d[l + O(Pr)l (30) 

The use of the single variable. the virtual tempera- 
ture, T,, to characterise the buoyancy force implicitly 
assumes that the compositional and thermal boundary 
layers are of similar thickness. Equation (3) requires 
a balance between conduction across the boundary 
layer and advection along it, hence : 

As the Prandtl number for humid air is relatively 
constant, it is not possible to accurately determine the 
precise dependency. so here we replace O(Pr) with 
simply Pr and insert an undetermined proportionality 
constant, to give the equation 

Bo, 

.d(l fPr) 
= C Nu(Nu+.d I)‘. (31j 

cV_l 
(23) 

SCALE ANALYSIS OF THE HUMIDITY 
L (p TRANSPORT 

where both temperature gradients have been assumed 
to be proportional to the temperature difference 
across the cavity and, therefore, each other. This can 
be solved to express the speed scale in terms of the 
characteristic lengths : 

(24) 

Because the species equation (4) is formally ident- 
ical to the heat equation (3), the final result of the 
previous section may be carried over, with the obvious 
substitution of the Sherwood number for the Nusselt 
number, the Schmidt number for the Prandtl number. 
and a modified virtual Boussinesq number, 

and hence, by equations (1 I) and (13) (dropping the 
pure number, 2), in terms of the Nusselt number, fluid 
properties and cavity dimensions : 

L 
V*-- 

k/pep 
- Nu(Nu+.d-‘). (29 

This aptness of this speed scale is investigated later, 
via the results of the numerical solutions. Equation 
(24) can be substituted into the inertia and friction 
scales (17) and (18) : 

VERIFICATION AGAINST NUMERICAL 
SOLUTIONS 

7 
Inertia LZL 

pc;ci4 
(26) 

pki 
Friction ~ 

yc,64 
(27) 

That the constant, C, should be the same in both 
cases, or even that it should be constant, cannot be 
proved CI priori, as so many assumptions have been 
made along the way. To resolve this question, the 
formulae were tested against a series of numerical 
simulations, performed on the finite element fluid 
dynamics package, FlDAPt [ 151. The numerical solu- 
tions allowed testing of both the predictions for the 
overall transport rates and the scaling rules employed. 

The balance between inertia, friction and buoyancy 
now reads [14] 

A total of 45 runs were made for a 50 mm square 
cavity filled with air at mean temperatures from 10 to 
50’ C, with a 5 K temperature difference and the ver- 
tical walls having equilibrium relative humidities of0, 
50 and 100%. The equations solved were (1) (4) 
above. The fluid property data used is shown in Table 
1. All runs were made at a constant total pressure of 
101, 325 Pa. Further details of the solutions are given 
in Ref. [ 161. The dimensionless correlation parameters 
were evaluated at the arithmetic mean temperature 
and specific humidity. 

or, multiplying through by L’ and introducing the 
Prandtl and virtual Boussinesq numbers, 

fThe rights to use FIDAP have been acquired by the 
Department of Mechanical Engineering under license from 
Fluid Dynamics International. 

The speed scale is validated in Fig. 2. where the 
maximum vertical speed from each run is used. The 
figure shows that the relation (25) is well represented 
by a linear equation : 
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Table 1. Fluid property data used in the 45 FIDAP runs. The transport properties were evaluated 
at each node by linear interpolation in the intensive variable (in the left column of each subtable) 
between the values listed. The saturation specific humidity was evaluated only at the tempera- 
tures shown, for the vertical wall boundary condition. The data are from Professor D. J. Close 

(pers. comm.) 

T (“C) k (mW/m.K) D (mm2/s) P Wa.s) %+I ( x 107 

5.0 
1.5 

10.0 
12.5 
17.5 
20.0 
22.5 
27.5 
30.0 
32.5 
37.5 
40.0 
42.5 
41.5 
50.0 
52.5 
60.0 

24.5 

24.9 23.4 

25.6 24.7 18.1 

26.4 26.3 18.6 

27.3 28.0 19.0 

28.2 29.5 

29.1 30.9 

17.5 

27.7 

19.3 

19.6 

m (6) cp (J/&K) 

5.4 
6.4 
- 
9.0 

12.3 

16.9 
22.9 
- 

30.6 
40.6 

53.4 
69.8 
- 

90.4 
- 

0.0 1004 
7.7 1010 

15.3 1016 
23.1 1022 
30.9 1028 
38.8 1034 
46.8 1040 
53.8 1046 
63.0 1052 
71.2 1058 
79.5 1065 

VLpc, VERIFICATION AGAINST PUBLISHED DATA FOR 

k 
= 2.82Nu(Nu+.sc’) (33) THE DRY AIR CASE 

for which the rms relative error is 2.0%. 
The proportionality constant, C, is determined to 

be 53.5 by a least squares fit of equation (31) to the 
numerical heat transfer results (see Fig. 3). The result- 
ing curve, along with k 5% accuracy limits, is shown 
for the Nusselt and Sherwood numbers in Figs 4 and 
5, respectively. 

If the proportionality constant had been determined 
instead by a regression to the mass transfer data, it 
would have differed by less than 0.2%. As the 
coefficient acts on a fourth degree polynomial of the 
Nusseit or Sherwood number, the corresponding error 
in the transfer rates is substantially less. This is a 
striking verification of the handling of the heat and 
mass transfer analogy and the use of the virtual tem- 
perature in the scale analysis. 

All the points with Bo, > lO“(1 +I+) or 
Bo,* > IO4 (1 + SC) agree with the formula to within 
5%. For lower virtual Boussinesq numbers, the quan- 
titative agreement is only fair, as presumably the 
boundary layer approximations are less appropriate. 

Equation (3 1) should be applicable to the problem 
of the dry air cavity, noting that the virtua! tem- 
perature reduces to the normal temperature in this 
case. To test this, the correlatton is compared with 
de Vahl Davis’ bench mark solution for a single, 
Boussinesq fluid of Pr = 0.71 in a square cavity 
[5], by plotting (see Fig. 6) the bench marks points 
and the curve 

l+Pr 
Ra = 53.5- -NNu(Nu+a-1)‘. Pr (34) 

The agreement is excellent (better than 2%) for 
the points at Ra = 104, lo5 and 106, which is very 
encouraging, particularly as it represents an extra- 
polation outside the range of the data used in deter- 
mining the proportionality coefficient, the highest (vir- 
tual) Rayleigh number used in the numerical solutions 
WS 1.9 X I@. 

The equation is out by 12% for the Ra = 10’ case 
(when the boundary layer approximations are least 
valid). As Gill [13] gives the criterion for distinct 
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Fig. 2. Demonstration of the validity of the speed scale (24). 
The speed, u,,,, used is the maximum nodal vertical com- 
ponent of velocity from each of the 45 FIDAP solutions. The 

curve is a least squares slope of best fit : y = 2.32x. 

boundary layers as Ra > 2 x lo“, even this level of 
agreement is surprisingly good. Predicting a Nusselt 
number less than unity is unreasonable however, 
though in this lower Rayleigh number range, the heat 
transfer is little higher than the Nu = 1 level, so that 
the performance of the formula is of no practical 
importance. 

DISCUSSION 

Relative to the virtual Boussinesq number, the Nus- 
selt number appears in equation (30) as a fourth 
degree polynomial. Such a relation could not be 
revealed by a log-log plot. However, it may be sig- 
nificant that the index of the Rayleigh number is often 
reported in the literature as being somewhere between 
l/4 and l/3. For example, Chenoweth and Paolucci 
[6] give 0.2969 as the value for .01 = 1. The tall cavity 
(d > 5) approximate analytic solution reported by 
Raithby et al. [lo] contains a l/4 power dependence, 
though they note that this is not to be expected for 
lower aspect ratio cavities. Equation (31) behaves in 
this way, approaching a simple one-fourth power law 
as the aspect ratio increases. 

The proportionality cannot be expected to hold at 
very low virtual Boussinesq numbers because, in this 
case, from equation (29), the “boundary layers” must 
meet in the middle, eliminating the core. The model 

Fig. 3. Demonstration of the validity of the heat transfer 
proportionality (30). Determination of the proportionality 

constant by slope of best fit. 
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Fig. 4. Heat transfer; points are the results from the 45 
FIDAP tests. The solid curve is equation (31) and the + 5% 

error region is included. 
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Fig. 5. Mass transfer. Points are the results of the 40 FIDAP 
tests with non-zero humidity gradients. The solid curve is 
equation (32), with the proportionality constant, C = 54.5, 
obtained from the heat transfer results in Fig. 3 ; the dashed 

curves represent + 5% accuracy limits. 

does take account of the reduction in the size of the 
core when the boundary layers are not insignificantly 
thin, but not to this extent. In the limit as the virtual 
Boussinesq number goes to zero, the Nusselt number 
should approach unity, as the heat transfer takes place 
by pure conduction. The proportionality does not do 
this. The 45 tests extend down to virtual Boussinesq 
numbers around 4000. A rough guide to the lower 
limit of applicability of the model is obtained by sub- 
stituting Nu = 1 into equation (31), which gives 
Bo, = 435( 1 + Pr) for the square cavity, the analysis 
is clearly invalid for lower Boussinesq numbers and 
improves to better than +5% accuracy as 
Bo, > 104(1+Pr). 

If the momentum balance against the bouyancy 
force had been taken with either the inertia or friction 
singly, the heat transfer equation (30) would contain 
either the Boussinesq or Rayleigh number, with no 
Prandtl number dependency. This corresponds to the 
asymptotic behaviour as the Prandtl tends to zero or 
infinity. The natural convection heat transfer cor- 
relations of LeFevre [17], Berkovsky and Polevikov 
[4] and Rohsenhow and Choi [18] display the same 
asymptotic behaviour, though all four interpolation 
formulae differ. The range of Prandtl numbers in the 
present work (0.7 < Pr < 0.821) is not really wide 
enough to pick up the distinctions, though the 

Ra 
Fig. 6. Comparison of the present scale analysis, the curve is 
equation (34), with de Vahl Davis’ bench mark solution [5] 
for the square cavity with no humidity gradient (the points). 

Schmidt number is lower (down to 0.605), so that 
the importance of obtaining the correct dependency 
arises in the use of the same forma1 equation for the 
heat and mass transfer. Stating that C is the same in 
the two equations (31) and (32) means : 

,f(=) _ BoXI + Pr) 
.f(Pr) Bo,( 1 + SC) (35) 

where,f(x) = x(x+&-I)‘. If this is correct, the ratio 
of the estimates for C from the mass transfer data and 
heat transfer data would be 

Pr(1 +Sc) 
Sc(l+ Pr) 

if the inertial force were neglected. This ratio is 1.10 
for Pr = 0.71 and SC = 0.61. If the friction force were 
neglected, the ratio would be 

1+sc 

l+Pr 

which is 0.94. These ratios compare poorly with the 
0.998 obtained by the present analysis. 

By the similarity of the heat and mass transfer equa- 
tions, the Sherwood number should be the same func- 
tion of the Schmidt number as the Nusselt is of the 
Prandtl number, which is supported by the present 
results. Both the Nusselt and Sherwood numbers, 
however, should depend on both the Prandtl and 
Schmidt numbers. This has been ignored here, as the 
Lewis number is close to unity. Physically this cross- 
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dependence results from the different influence of 
compositional and thermal gradients on the buoyancy 
when the relevant boundary layers differ appreciably 
in extent, i.e. the virtual temperature would no longer 
be sufficient to describe the buoyancies, and the results 
would vary with the buoyancy ratio, N, a parameter 
that was ignored in the scale analysis. That this causes 
no serious error for humid air can be judged by the 
accuracy of the predictions, given that a wide spread 
of the buoyancy ratio is covered by the 45 FIDAP 
runs : -2.7 < N < 3.5. If the Lewis number were fur- 
ther from unity, the buoyancy ratio couid be expected 
to increase in importance. 

CONCLUSION 

Theoretically based formulae for the total, steady 
state heat and mass transfer rates across vertical cavi- 
ties have been obtained. The single adjustable con- 
stant has been found by regression to numerical solu- 
tions. The formulae have been tested against 
numerical solutions for a square cavity involving a 
wide range of humidity gradients. The formulae 
worked well, with the bulk of the points lying within 
the k 5% range, with poorest performance occurring 
for very low virtual Boussinesq numbers (in the con- 
duction/diffusion regime). The results have not been 
tested for aspect ratios other than unity and do not 
include three-dimensional or transient effects. No tur- 
bulent flows were studied. 
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